Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022
 GRADE: 11

SUBJECT: Algebra 2

TIMELINE: Quarter 3
Theme/Big Ideas for this Unit: ROOTS \& RADICAL EXPRESSIONS (Equivalence, Solve Equations \& Inequalities, Function)

Essential Questions for these Units

1. To simplify the nth root of an expression, what must be true about the expression?.
2. When you square each side of an equation is the resulting equation equivalent to the original?
3. How are functions and its inverse functions relate?

Standards	Content	Objectives	Assessment	Resources	Vocabulary
A2.A-SSE.A.2. Use structure to identify ways to rewrite polynomial and rational expressions. Focus on polynomial operations and factoring patterns.	Lessons 6.1 Roots and radical expressions Lesson 6.2 Multiply and divide radical expressions. Lesson 6.3, Lesson 6-4 Binomial Radical Expressions	I will find roots and apply substitutions to solve quadratic equations. I will simplify square roots using properties of exponents to write the entire radicand as a perfect square. I will multiply and divide radical expressions. I will add and subtract radical expressions.	Lesson Check/Lesson Quiz: page 364 page370 page 378 page 385 Problem solving Homework Summative Test	Charles, R. et. AI. (2015). Algebra 2 Common Core. Pearson Education and Associates. P. 357-427; Savvas Realize; Math xL	Nth root Principal root Radicand Index Simplest form of a radical Rationalize the denominator
A2.A-CED.A. 1 Create equations	Lesson 6-5 Solving Square	I will solve square root and other	Lesson Check/Lesson Quiz:		Radical equation Square root

Window Rock Unified School District \#8 Curriculum Guide

2021-2022

Standards	Content	Objectives	Assessment	Resources	Vocabulary
and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions. A2.A-REI.A.2. Solve rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Root and Other Radical Equations.	radical equation.	page 395 Problem solving Homework Summative Test		equation
A2.F-BF.A. 1 Write a function that describes a relationship between two quantities. Functions include linear, quadratic, exponential,	Lesson 6-6 Function Operations	I will add, subtract, multiply and divide functions. I will find the composite of 2 functions.	Lesson Check/Lesson Quiz: page 401. Problem solving Homework Summative Test		Composite function

Window Rock Unified School District \#8 Curriculum Guide

2021-2022

Standards	Content	Objectives	Assessment	Resources	Vocabulary
polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewise-defined functions. b. Combine function types using arithmetic operations and function composition.					

Window Rock Unified School District \#8 Curriculum Guide

2021-2022

Standards	Content	Objectives	Assessment	Resources	Vocabulary
A2.F-BF.B.4. Find inverse functions. a. Understand that an inverse function can be obtained by expressing the dependent variable of one function as the independent variable of another, recognizing that functions f and g are inverse functions if and only if $f(x)=y$ and $g(y)=x$ for all values of x in the domain of f and all values of y in the domain of g. b. Understand that if a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b,a). c. Interpret the meaning of and relationship between a function and its inverse	Lesson 6-7 Inverse Function Lesson 6-8 Graphing Radical Functions	I will find the inverse of a relation or function. I will graph square root and other radical functions.	Lesson Check/Lesson Quiz: page 409. Problem solving Homework Summative Test		Inverse relation Inverse function One-to-one function Radical function Square root function

Window Rock Unified School District \#8 Curriculum Guide

2021-2022

Standards	Content	Objectives	Assessment	Resources	Vocabulary
utilizing real-world context.					

Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022

SUBJECT: Algebra 2 GRADE: 11 TIMELINE: Quarter 3
Theme/Big Ideas for this Unit: EXPONENTIAL \& LOGARITHMIC FUNCTIONS (Modeling, Equivalence, and Function)
Essential Questions for this Unit:

1. How do you model a quantity that changes regularly over time by the same percentage?
2. How are exponents and logarithms related?
3. How are exponential functions and logarithmic functions related?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary
A2.A-CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions.	Lessons7-1 Exploring Exponential Models	I will model exponential growth and decay.	Lesson Check/Lesson Quiz: page 439. Problem solving Homework Summative Test	Charles, R. et. Al. (2015). Algebra 2 Common Core. Pearson Education and Associates. P. 434-490. Savvas Realize; Math xL	Exponential function Exponential growth Exponential decay Asymptote Growth factor Decay factor

Window Rock Unified School District \#8 Curriculum Guide 2021-2022

Window Rock Unified School District \#8
Curriculum Guide
2021-2022

Window Rock Unified School District \#8

Curriculum Guide

2021-2022

| | Lesson 7-6
 Natural Logarithms | I will evaluate and simplify
 natural logarithmic
 expressions.
 I will solve equations using
 natural logarithm. | Lesson
 Check/Lesson
 Quiz:
 Page 481
 Problem solving
 Homework
 Summative Test | Natural
 logarithmic
 function |
| :--- | :--- | :--- | :--- | :--- | :--- |

Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022
 GRADE: 11 TIMELINE: Quarter 3

SUBJECT: Algebra 2
Theme/Big Ideas for this Unit: RATIONAL FUNCTIONS (Proportionality, Function, and Equivalence)
Essential Questions for this Unit:

1. Are two quantities inversely proportional if an increase in one corresponds to a decrease in the other?
2. What kinds of asymptotes are possible for a rational function?
3. Are a relational expression and its simplified form equivalent?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary
A2.A-CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on equations and inequalities arising from linear, quadratic, rational, and exponential functions.	Lesson 8-1 Inverse Variation Lesson 8-2 The Reciprocal Function	I will recognize and use inverse variation. I will use joint and other variations in solving problems. I will graph reciprocal functions. I will graph translation of reciprocal functions.	Lesson Check/Lesson Quiz: Page 503. Problem solving Homework Summative Test Lesson Check/Lesson Quiz: page 512. Problem solving Homework Summative Test Lesson	Charles, R. et. Al. (2015). Algebra 2 Common Core. Pearson Education and Associates. P.498-557. Savvas Realize; Math xL	Inverse variation Combined variation Joint variation Reciprocal function Branch Rational

Window Rock Unified School District \#8

Curriculum Guide
2021-2022

Window Rock Unified School District \#8 Curriculum Guide
 2021-2022

Window Rock Unified School District \#8

Curriculum Guide

2021-2022

| exponential functions to | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| cases where $f(x)$ and/or | | | | |
| $g(x)$ are polynomial, | | | | |
| rational, exponential, | | | | |
| and logarithmic | | | | |
| functions. | | | | |

Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022

SUBJECT: Algebra 2 GRADE: 11 TIMELINE: Quarter 3

Theme/Big Ideas for this Unit: SEQUENCES \& SERIES (Variable, Equivalence, Modeling)

Essential Questions for this Unit:

1. 2. How can you represent the terms of a sequence explicitly?
1. What are equivalent explicit and recursive definitions for an arithmetic sequence?
2. How can you model a geometric sequence?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary
A2.A-SSE.B. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.	Lesson 9-3 Geometric Sequences Lesson 9-4 Arithmetic Series	I will define, identify, and apply geometric sequence. I will define the arithmetic series and find their sum using the summation notation.	Lesson Check/Lesson Quiz: Page 583. Problem solving Homework Summative Test Lesson Check/Lesson Quiz: Page 591. Problem solving Homework Summative Test	Charles, R. et. Al. (2015). Algebra 2 Common Core. Pearson Education and Associates. P.587-601. Savvas Realize; Math xL	Geometric sequence Common ratio Geometric mean Series Arithmetic series

Window Rock Unified School District \#8

Curriculum Guide

2021-2022
$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \text { Lesson 9-5. } \\ \text { Geometric Series }\end{array} \quad \begin{array}{l}\text { I will define the sum of a } \\ \text { finite geometric series and } \\ \text { use the formula to find } \\ \text { their sum. }\end{array} \begin{array}{l}\text { Lesson } \\ \text { Check/Lesson } \\ \text { Quiz: } \\ \text { Page 598. } \\ \text { Problem solving } \\ \text { Homework } \\ \text { Summative Test }\end{array} \quad \begin{array}{l}\text { Finite series } \\ \text { Infinite series }\end{array}\right]$

Theme/Big Ideas for this Unit: PROBABILITY \& STATISTICS
Essential Questions for this Unit:

1. What is the difference between a permutation and a combination?
2. What is the difference between experimental and theoretical probability?
3. How are measures of central tendency different from standard deviation?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary

Window Rock Unified School District \#8 Curriculum Guide

 2021-2022| A2.S-IC.A.1.
 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
 A2.S-IC.B.3.
 Recognize the purposes of and differences between designed experiments, sample surveys and observational studies. A2.S-IC.B.4. Use data from a sample survey to estimate a population mean or proportion; recognize that estimates are unlikely to be correct and the estimates will be more precise with larger sample sizes. | Lesson 8
 Samples \& Surveys | I will identify sampling methods.
 I will recognize bias in samples and surveys. | Lesson
 Check/Lesson
 Quiz:
 Page 728.
 Problem solving
 Homework
 Summative Test | Charles, R. et.
 Al. (2015).
 Algebra 2
 Common
 Core. Pearson
 Education and
 Associates.
 P.681-757.
 Savvas
 Realize;
 Math $x L$ | Population
 Sample
 Convenience sample
 Self-selected sample
 Systematic sample
 Random sample Observational study
 Controlled experiment
 Survey |
| :---: | :---: | :---: | :---: | :---: | :---: |

Window Rock Unified School District \#8
Curriculum Guide
2021-2022

A2.S-IC.A.2. Explain whether a specified model is consistent with results from a given datagenerating process.	Lesson 2	I will find the probability of an event using theoretical, experimental, and simulation methods.	Lesson Check/Lesson Quiz: Page 685. Problem solving Homework Summative Test	Experimental probability Simulation Sample space Equally likely outcomes Theoretical probability
A2.S-CP.A.5. Recognize and explain the concepts of conditional probability and independence utilizing real-world context. A2.S-CP.B.7. Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)$ - $P(A$ and $B)$, and interpret the answer in terms of the model.	Lesson 3 Probability of Multiple Events	I will find the probability of event A AND B I will find the probability of event A OR B	Lesson Check/Lesson Quiz: Page 691. Problem solving Homework Summative Test	Dependent events Independent events Mutually exclusive events

Window Rock Unified School District \#8 Curriculum Guide
 2021-2022

A2.S-CP.B.6. Use Bayes Rule to find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model. A2.S-CP.B.8. Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=$ $P(A) P(B \mid A)=$ $P(B) P(A \mid B)$, and interpret the answer in terms of the model. A2.S-CP.A.3. Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	Lesson 4 Conditional Probability	I will find conditional probabilities. I will use tables and tree diagrams to determine conditional probabilities.	Lesson Check/Lesson Quiz: Page 700. Problem solving Homework Summative Test

Window Rock Unified School District \#8 Curriculum Guide
 2021-2022

A2.S-CP.A.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.				
A2.S-CP.A.5. Recognize and explain the concepts of conditional probability and independence utilizing real-world context.				

Window Rock Unified School District \#8
Curriculum Guide
2021-2022

Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022

A2.S-ID.A.4.	Lesson 7 Use the mean and standard deviation of a data set to fit it to a normal curve, and use properties of the normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not		I will find the standard deviation and variance of a appropriate. Use	Not of values.	Lesson Check/Lesson calculators, spreadsheets, or tables to estimate areas under the normal curve.

Window Rock Unified School District \#8
 Curriculum Guide
 2021-2022

SUBJECT: Algebra 2
GRADE:11 TIMELINE: Quarter 4

Theme/Big Ideas for this Unit: PERIODIC FUNCTIONS \& TRIGONOMETRY

Essential Questions for this Unit:

1. How can you model periodic behavior?
2. What function has as its graph a sine curve with amplitude 4 period π, and a minimum at the origin?
3. If you know the value of $\sin \theta$, how can you find $\cos \theta, \tan \theta, \csc \theta, \sec \theta$, and $\cot \theta$?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary
A2.F-IF.B.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problemsolving opportunities utilizing a real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root and piecewisedefined functions.	Lesson 13-1	I will identify cycles and periods of periodic functions. I will find the amplitude of periodic functions.	Lesson Check/Lesson Quiz: Page 831. Problem solving Homework Summative Test	Charles, R. et. Al. (2015). Algebra 2 Common Core. Pearson Education and Associates. P.828-882. Savvas Realize; Math $x L$	Periodic function Cycle Period Amplitude

Window Rock Unified School District \#8 Curriculum Guide

2021-2022
\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { A2.F-TF.A.2. } \\
\text { Explain how the unit circle in the } \\
\text { coordinate plane enables the } \\
\text { extension of sine and cosine } \\
\text { functions to all real numbers, } \\
\text { interpreted as radian measures } \\
\text { of angles traversed } \\
\text { counterclockwise around the } \\
\text { unit circle. }\end{array} & \begin{array}{l}\text { Lesson 13-2 } \\
\text { Angles and } \\
\text { the Unit Circle }\end{array} & \begin{array}{l}\text { I will work with angles in } \\
\text { standard position. } \\
\text { I will find coordinates of } \\
\text { points on the unit circle. }\end{array} & \begin{array}{l}\text { Lesson } \\
\text { Check/Lesson } \\
\text { Quiz: } \\
\text { Page 840. } \\
\text { Problem solving } \\
\text { Homework } \\
\text { Summative Test }\end{array} & & \text { Standard position } \\
\text { Initial side }\end{array}
$$\right] \begin{array}{l}Terminal side

Coterminal

angles

Unit circle\end{array}\right]\)| Cosine θ |
| :--- |
| Sine θ |

Window Rock Unified School District \#8
Curriculum Guide
2021-2022

Window Rock Unified School District \#8
Curriculum Guide
2021-2022

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

SUBJECT: Algebra 2 GRADE: 11 TIMELINE: Quarter 4 Theme/Big Ideas for this Unit: TRIGONOMETRIC IDENTITIES \& EQUATIONS (EQUIVALENCE \& FUNCTIONS) Essential Questions for this Unit:

1. How do you verify that an equation involving the variable x is an identity?
2. A trigonometric function correspond one number to many, so how can its inverse be a function?
3. How do the trigonometric functions relate to the trigonometric ratios for a right triangle?

Standards	Content	Student Friendly Objectives	Assessment	Resources	Vocabulary

Window Rock Unified School District \#8 Curriculum Guide
 2021-2022

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { A2.F-TF.C.8. } \\ \text { Use the Pythagorean } \\ \text { identity } \sin ^{2}(\theta)+\cos ^{2}(\theta) \\ =1 \text { and the quadrant of } \\ \text { the angle } \theta \text { to find } \sin (\theta), \\ \cos (\theta) \text { or } \tan (\theta) \text { given } \\ \sin (\theta) \text { or } \cos (\theta) .\end{array} & \begin{array}{ll}\text { Lesson 14-1 } \\ \text { Trigonometric } \\ \text { Identities }\end{array} & & \begin{array}{l}\text { I will verify trigonometric } \\ \text { identities }\end{array} & \begin{array}{l}\text { Lesson } \\ \text { Check/Lesson } \\ \text { Quiz: } \\ \text { Page 908. } \\ \text { Problem solving } \\ \text { Homework } \\ \text { Summative Test }\end{array} & \begin{array}{l}\text { Charles, R. et. } \\ \text { Al. (2015). } \\ \text { Algebra 2 } \\ \text { Common } \\ \text { Core. Pearson } \\ \text { Education and } \\ \text { Associates. } \\ \text { P.904-. }\end{array} \\ \text { Trigonometric } \\ \text { identity }\end{array}\right]$

